On the uniqueness of a solution of a two-phase free boundary problem
نویسندگان
چکیده
In this paper, we study the uniqueness problem of a two-phase elliptic free boundary problem arising from the phase transition problem subject to given boundary data. We show that in general the comparison principle between the suband super-solutions does not hold, and there is no uniqueness of either a viscosity solution or a minimizer of this free boundary problem by constructing counter-examples in various cases in any dimension. In one-dimension, a bifurcation phenomenon presents and the uniqueness problem has been completely analyzed. In fact, the critical case signifies the change from uniqueness to non-uniqueness of a solution of the free boundary problem. Non-uniqueness of a solution of the free boundary problem suggests different physical stationary states caused by different processes, such as melting of ice or solidification of water, even with the same prescribed boundary data. However, we prove that a uniqueness theorem is true for the initial–boundary value problem of an ε-evolutionary problem which is the smoothed two-phase parabolic free boundary problem. © 2009 Elsevier Inc. All rights reserved.
منابع مشابه
UNIQUENESS OF SOLUTION FOR A CLASS OF STEFAN PROBLEMS
This paper deals with a theoretical mathematical analysis of one-dimensional solidification problem, in which kinetic undercooling is incorporated into the This temperature condition at the interface. A model problem with nonlinear kinetic law is considered. We prove a local result intimate for the uniqueness of solution of the corresponding free boundary problem.
متن کاملA two-phase free boundary problem for a semilinear elliptic equation
In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary. We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...
متن کاملExiststence and uniqueness of positive solution for a class of boundary value problem including fractional differential equation
In this paper we investigate a kind of boundary value problem involving a fractional differential equation. We study the existence of positive solutions of the problem that fractional derivative is the Reimann-Liouville fractional derivative. At first the green function is computed then it is proved that the green function is positive. We present necessary and sufficient conditions for existen...
متن کاملExistence and uniqueness of solutions for a periodic boundary value problem
In this paper, using the fixed point theory in cone metric spaces, we prove the existence of a unique solution to a first-order ordinary differential equation with periodic boundary conditions in Banach spaces admitting the existence of a lower solution.
متن کاملNumerical Solution of a Free Boundary Problem from Heat Transfer by the Second Kind Chebyshev Wavelets
In this paper we reduce a free boundary problem from heat transfer to a weakly Singular Volterra integral equation of the first kind. Since the first kind integral equation is ill posed, and an appropriate method for such ill posed problems is based on wavelets, then we apply the Chebyshev wavelets to solve the integral equation. Numerical implementation of the method is illustrated by two ben...
متن کامل